In Class Activity Plan

Week 14: Angular Motion & Simple Harmonic Motion

 

25 min������������ Whiteboard - Satellite Centripetal Ranking Problem (Word, Pdf)

����������������������� PURPOSE: Practice modeling centripetal acceleration situation.����� �����������

Lots of options here probably want to give one as homework:

 

20 min ����������� Board Meeting

PURPOSE: Build consensus around modeling centripetal acceleration situation.

Goals:

         Centripetal force is just the net force towards the center

         Need to attend to the radius of the circular path

 

 

Additional resources which could be used:

Ferris Wheel Centripetal Force (Word, Pdf)

Centripetal Force Ranking (Word, Pdf)

Circular Motion Problems (Word, Pdf)

 

 

20 min������������ Whiteboard - Ladybug revolution part 1

PURPOSE: Investigate rotational motion, introduce rotational analogs to translational kinematics

Direct students to PhET simulation � Ladybug Revolution (http://phet.colorado.edu/en/simulation/rotation)

����������������������� Give students 10 minutes to explore.

����������������������� Summarize what you have learned on whiteboard.

 

10 min������������ Board Meeting

����������������������� PURPOSE: Share what was learned from investigation of simulation

 

 

20 min������������ Whiteboard - Ladybug Revolution part 2

PURPOSE: Develop models for constant rotational motion from graphs of rotational motion.��

����������������������� Directions: Return to the Ladybug Revolution simulation

Use the second tab which shows graphs, use radians.

Answer: What have you learned? What rules can you make? What questions do you have?� On whiteboard.

 

20 min������������ Board Meeting

PURPOSE: Reach consensus about equations that describe constant angular acceleration motion.

1. Review the kinematic representations in the basic 1-d constant acceleration model

����������������������������������� a) Equations

����������������������������������������������� d = Δpos

����������������������������������������������� v = Δpos/Δt

����������������������������������������������� a = Δv/Δt

����������������������������������������������� d = v0 + �at2

����������������������������������������������� vf = v0 + at

����������� b) Velocity-time graph

 

 

2. When does this model apply?

Answer: when we have straight line motion

3. What is the motion of the wheel?

Answer: not moving linearly, but it is movingt

����������� 4. Create a table of angular variables by analogy

d = Δpos

θ = Δangle

v = Δpos/Δt

ω = Δangle/Δt

a = Δv/Δt

α = Δω/Δt

d = v0 + �at2

θ = ωt + � α t

vf = v0 + at

ωf = ω0 + at

 

5. How should be able to go between the two versions?

����������������������� a) d = r θ

b) v = r ω

c) a = r α

 

����������� 6. �Now we can add on the rest of relationships

�����������������������

m

I = miri

p = mv

L = Iω

Fnet = m a

t = Iα

Eklinear = � m v2

Ekrot = � I ω2

 

25 min������������ Whiteboard- Helicopter Quantitative Problem (Word, Pdf)

����������������������� PURPOSE: Model situation with constant angular acceleration

�����������

20 min������������ Board Meeting����������

����������������������� PURPOSE: Build consensus about modeling constant angular acceleration

 

Homework - Ranking of Theta vs t graph (Word, Pdf) and Rotational speed ranking (Word, Pdf)