
In Class Activity Plan Week 14: Angular Motion & Simple Harmonic Motion

25 min	Whiteboard – Satellite Centripetal Ranking (<u>Word</u> , <u>Pdf</u>) PURPOSE: Practice modeling centripetal acceleration situation. <i>Lots of options here probably want to give one as homework:</i>	
20 min	 Board Meeting PURPOSE: Build consensus around modeling centripetal acceleration situation. Goals: Centripetal force is just the net force towards the center Need to attend to the radius of the circular path 	
	Additional resources which could be used: Ferris Wheel Centripetal Force (<u>Word</u> , <u>Pdf</u>) Centripetal Force Ranking (<u>Word</u> , <u>Pdf</u>) Circular Motion Problems (<u>Word</u> , <u>Pdf</u>)	
20 min	Whiteboard - Ladybug revolution part 1 PURPOSE: Investigate rotational motion, introduce rotational analogs to translational kinematics Direct students to PhET simulation – Ladybug Revolution (<u>http://phet.colorado.edu/en/simulation/rotation</u>) Give students 10 minutes to explore. Summarize what you have learned on whiteboard.	
10 min	Board Meeting PURPOSE: Share what was learned from investigation of simulation	
20 min	Whiteboard - Ladybug Revolution part 2 PURPOSE: Develop models for constant rotational motion from graphs of rotational motion. Directions: Return to the Ladybug Revolution simulation Use the second tab which shows graphs, use radians. Answer: What have you learned? What rules can you make? What questions do you have? On whiteboard.	
20 min	 Board Meeting PURPOSE: Reach consensus about equations that describe constant angular acceleration motion. 1. Review the kinematic representations in the basic 1-d constant acceleration model a) Equations 	

 $d = \Delta pos$ $v = \Delta pos/\Delta t$ $a = \Delta v/\Delta t$ $d = v_0 + \frac{1}{2}at^2$ $v_f = v_0 + at$ b) Velocity-time graph

- 2. When does this model apply? *Answer:* when we have straight line motion
- 3. What is the motion of the wheel?
- Answer: not moving linearly, but moving by rotating
- 4. Create a table of angular variables by analogy

$d = \Delta pos$	$\theta = \Delta angle$
$v = \Delta pos/\Delta t$	$\omega = \Delta angle / \Delta t$
$a = \Delta v / \Delta t$	$\alpha = \Delta \omega / \Delta t$
$d = v_0 + \frac{1}{2}at^2$	$\theta = \omega t + \frac{1}{2} \alpha t$
$v_{f} = v_{0} + at$	$\omega_{\rm f} = \omega_0 + {\rm at}$

5. How are we able to go between the two versions?

a)
$$d = r \theta$$

b) $v = r \omega$

- c) $a = r \alpha$
- 6. Now we can add on the rest of the relationships:

m	$I = \sum m_i r_i$
p = mv	$L = I\omega$
$F_{net} = m a$	$\tau = I\alpha$
$E_{klinear} = \frac{1}{2} m v^2$	$E_{\rm krot} = \frac{1}{2} I \omega^2$

- 25 min Whiteboard- Helicopter Quantitative Problem (Word, Pdf) PURPOSE: Model situation with constant angular acceleration
- 20 min **Board Meeting** PURPOSE: Build consensus about modeling constant angular acceleration

Homework - Ranking of Theta vs t graph (<u>Word</u>, <u>Pdf</u>) and Rotational Speed Ranking (<u>Word</u>, <u>Pdf</u>)